Estimated Impact of Produce Prescriptions in 50 U.S. States

Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy FOOD IS MEDICINE INSTITUTE

Results from a simulation model¹ estimate that produce prescriptions could significantly improve health and be cost-saving in most states and cost-effective in all states.

About the Research

What was the intervention? Researchers estimated the impact of providing a produce prescription (PRx) to each eligible patient for at least 3 months; the mean value of the PRx was \$47/month. PRx provide free or discounted fruits, vegetables, and other produce alongside nutrition education to patients with diet-related conditions and unmet social needs. The intervention effects of PRx were estimated based on the average effects from 20 PRx programs, each with a duration of at least 3 months.

Who was eligible? U.S. adults ages 40-79 years with Medicare, Medicaid, or private insurance coverage who had both diabetes and food insecurity.

Key Findings

Nationwide Impact of Implementing Produce Prescriptions for Diabetes (Year 10)

eligible patients

QALYs³ gained

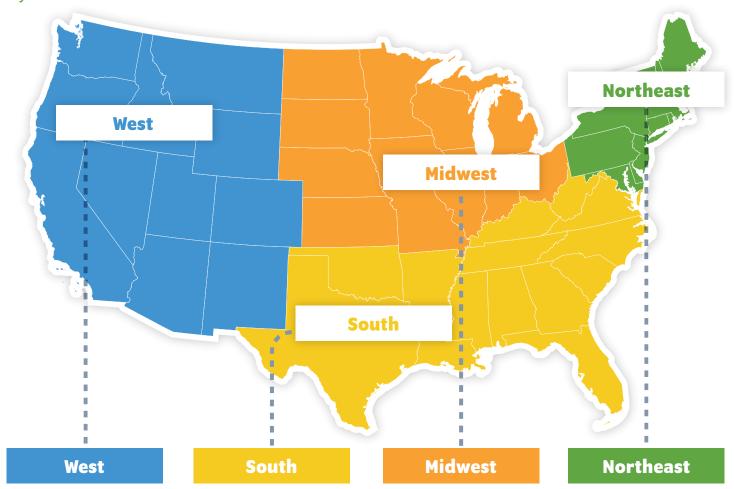
State-Level Impact of Implementing Produce Prescriptions for Diabetes (Year 10)

The proportion of eligible patients ranged from ~2% (Vermont, Montana, Colorado) to ~5% (Mississippi, Alabama, Louisiana). The number of eligible patients ranged from 7,000 (Wyoming, Alaska, Vermont) to 693,000 (California).

Reduced Cardiovascular Disease (CVD) Events

The number of reductions in CVD events ranged from ~100 (Wyoming, Vermont, Alaska) to >9,000 (Texas, California).

Healthcare Cost Impact


From a healthcare perspective, the intervention was projected to be: net cost-saving in most states (43/50); highly cost-effective⁴ in all but one state (49/50); and cost-effective⁵ in all states (50/50). Projected net savings were highest for New York (\$297 million), Pennsylvania (\$236 million), and Texas (\$133 million), and exceeded \$100 million in 4 additional states (New Jersey, Illinois, Ohio, and Missouri; see map on page 2).

Payer-Level Impact of Implementing Produce Prescriptions for Diabetes (Year 10)

The intervention was projected to be net cost-saving in the greatest number of states for Medicare (48/50), followed by Medicaid (41/50) and private payers (29/50).

Bottom line: These results support the implementation and evaluation of produce prescriptions in public and private health systems at the state level and nationwide.

Estimated 10-Year Impact of Produce Prescriptions for Diabetes on Healthcare Costs, by U.S. State*

Net Cost Savinas (\$)

Net Cost Savings (\$)		
Arizona	23,400,000	
New Mexico	13,100,000	
Utah	8,880,000	
Colorado	6,720,000	
Nevada	3,210,000	
Montana	2,210,000	
Wyoming	1,920,000	
Idaho	1,120,000	
Washington	225 000	
Washington	235,000	
Oregon	2,950,000	
	,	
Oregon	2,950,000	

Net Cost Savinas (\$)

iver cost savings (#)	
Texas	133,000,000
Tennessee	44,300,000
Georgia	36,200,000
Louisiana	29,700,000
North Carolina	26,500,000
Virginia	25,800,000
Alabama	24,700,000
Mississippi	22,500,000
Arkansas	20,800,000
South Carolina	15,400,000
Oklahoma	14,400,000
West Virginia	7,180,000
Kentucky	6,080,000
Florida	25,500,000

Net Cost Savings (\$)

	5
Illinois	126,000,000
Ohio	119,000,000
Missouri	101,000,000
Indiana	95,200,000
Michigan	90,600,000
Wisconsin	46,300,000
Minnesota	31,100,000
Kansas	28,600,000
lowa	28,200,000
Nebraska	13,400,000
North Dakota	5,320,000
South Dakota	5,080,000

Net Cost Savings (\$)

New York	297,000,000
Pennsylvania	236,000,000
New Jersey	131,000,000
Massachusetts	5 79,900,000
Connecticut	56,000,000
Maine	21,400,000
Rhode Island	17,000,000
New Hampshir	e 16,200,000
Vermont	5,620,000
Delaware	1,170,000
Marvland	17.400.000

² Cost savings indicate a net negative cost, which means that the costs of implementing the

^{*} Produce prescriptions for diabetes were projected to be net cost-saving² in 43 states (net negative cost values shown in bold type) and cost-effective or highly cost-effective in 7 states (net positive cost values shown below the rule). Though not cost saving, the values in these 7 states are well below the commonly accepted threshold for healthcare cost-effectiveness, indicating that the intervention provides good value for its cost.

¹Researchers from the Food is Medicine Institute at Tufts University used a validated microsimulation model to estimate the state-specific 5-year and 10-year health and economic impact of PRx for eligible patients. This fact sheet is drawn from the research, which is published as: Wang L, et al. Health and Economic Impact and Cost-Effectiveness of Produce Prescriptions for Diabetes in 50 US States: A Microsimulation Study. Diabetes Care 2025;48(10):1783-1793.

intervention (e.g., food costs and administrative and program delivery costs) are less than the healthcare costs averted.

³ A measure of how well a treatment lengthens or improves patient lives.

⁴ Incremental cost-effectiveness ratio (ICER) <\$50,000/QALY.

⁵ ICER <\$150,000/QALY.